Experiments Suggest Possible New Approach to Stem Cell Therapy for Spinal Cord Injury

Philadelphia, PA(December 7, 2010) — Initial experiments suggest a possible new approach to stem cell therapy for spinal cord injuries-using biocompatible “channels” made of chitosan to guide regeneration of new spinal cord tissue, reports the December issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health, a leading provider of information and business intelligence for students, professionals, and institutions in medicine, nursing, allied health, and pharmacy.

The use of chitosan channels “enhanced the survival of transplanted neural stem/progenitor cells” in rats, according to the study by Dr. Gokhan Bozkurt and colleagues of University of Toronto.

New Approach May Point Toward Effective Stem Cell Therapies for Spinal Cord Injury
The researchers compared two approaches to stem cell therapy in rats with induced spinal cord injuries. In one group, specialized neural stem cells were injected directly into the area of the spinal cord injury. In the other group, the stem cells were placed into tiny tubes, or “channels,” made out of chitosan.

Chitosan is a natural substance that is a major component of “crustacean exoskeletons”-for example, shrimp or lobster shells. The chitosan channels were created to provide a “biocompatible scaffolding” to promote and guide the growth of transplanted neural stem cells.

Several weeks after stem cell transplantation, rats receiving chitosan channels showed “less tissue loss” than those receiving stem cells alone. The percentage of surviving stem cells was very low in both groups, but significantly higher when they were delivered in chitosan channels: 1.1 percent, compared to 0.18 percent with stem cell injection alone.

The increase in stem cell survival with chitosan channels wasn’t enough to make a significant difference in recovery of function several weeks after spinal cord injury. In both groups, the surviving stem cells showed evidence of differentiation into specific types of spinal cord cells.

Stem cells have promise for the development of new treatments for spinal cord injury. Previous studies have shown that specialized neural stem cells can be induced to differentiate into different types of spinal nerve cells. However, there are important obstacles to developing stem cell techniques capable of bridging the injured area of the spinal cord and restoring function.

Although the new study is only a first step, the use of chitosan channels could one day lead to effective new approaches to using adult stem cells for spinal cord injuries. The results show that the use of “bioengineered, biodegradable, biocompatible, and non-toxic” chitosan channels can improve the survival of stem cells used to treat spinal cord injuries in rats.

Despite some encouraging results, the rate of stem cell survival was still very low and the technique did not lead to significant improvements in functional recovery. The authors are working on modifications to the chitosan channels in the hope of further enhancing the survival of stem cells and improving their ability to bridge the injured area.

About Neurosurgery
Neurosurgery, the Official Journal of the Congress of Neurological Surgeons, is your most complete window to the contemporary field of neurosurgery. Members of the Congress and non-member subscribers receive 3,000 pages per year packed with the very latest science, technology, and medicine, not to mention full-text online access to the world’s most complete, up-to-the-minute neurosurgery resource. For professionals aware of the rapid pace of developments in the field, Neurosurgery,/i> is nothing short of indispensable. Visit the journal online at LWW brand, as well as content-based sites and online corporate and customer services. LWW is part of Wolters Kluwer Health , a leading provider of information and business intelligence for students, professionals and institutions in medicine, nursing, allied health, pharmacy and the pharmaceutical industry.

Wolters Kluwer Health is a division of Wolters Kluwer, a leading global information services and publishing company. The company provides products and services for professionals in the health, tax, accounting, corporate, financial services, legal, and regulatory sectors. Wolters Kluwer had 2008 annual revenues of €3.4 billion ($4.9 billion), employs approximately 20,000 people worldwide, and maintains operations in over 35 countries across Europe, North America, Asia Pacific, and Latin America. Wolters Kluwer is headquartered in Amsterdam, the Netherlands. Its shares are quoted on Euronext Amsterdam (WKL) and are included in the AEX and Euronext 100 indices. Visit www.wolterskluwer.com for information about our market positions, customers, brands, and organization.

Contacts:

Robert Dekker
Director of Communications
Wolters Kluwer Health
+1 (215) 521-8928
Robert.Dekker@wolterskluwer.com

Connie Hughes
Director, Marketing Communications
Wolters Kluwer Health Medical Research
+1 (646) 674-6348
Connie.Hughes@wolterskluwer.com

This entry was posted in Publications. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>